Petoi Doc Center
🇺🇸English
🇺🇸English
  • Welcome to Petoi Doc Center
  • Getting Started Guide
  • 🙋‍♂️FAQ(Frequently Asked Questions)
  • Petoi robot joint index
    • Joint Pins on NyBoard
      • Nybble
      • Bittle
    • Joint Pins on BiBoard V0
      • Bittle X
      • Bittle X+Arm
    • Joint Pins on BiBoard V1
      • Bittle X
      • Bittle X+Arm
      • Nybble Q
  • Bluetooth Connection
    • BiBoard
    • NyBoard
  • Upload Firmware
    • NyBoard
    • BiBoard V0
    • BiBoard V1
  • Joint Calibration
  • Infrared Remote
    • Remote Controller
  • Mobile App
    • Introduction
    • Calibrator
      • Nybble
      • Bittle
    • Controller
  • Desktop APP
    • Introduction
    • Firmware Uploader
      • NyBoard
      • BiBoard V0
      • BiBoard V1
    • Joint Calibrator
      • NyBoard Preparation
      • BiBoard Preparation
      • Nybble
      • Bittle / Bittle X
        • Bittle (NyBoard)
        • Bittle X (BiBoard V0)
        • Bittle X (BiBoard V1)
      • Bittle X+Arm
        • BiBoard V1
        • BiBoard V0
    • Skill Composer
      • NyBoard Connection
      • BiBoard Connection
      • Interface
        • Nybble
        • Bittle / Bittle X
        • Bittle X+Arm
    • Tools
  • Block-based programming
    • Petoi Coding Blocks
      • NyBoard Preparation
      • BiBoard Preparation
    • Block-based Coding Curriculum - Learn Quadruped Robotics for Beginners
    • Python coding mode in Mind+
    • Generic Arduino Uno Blocks
    • Install Mind+ on Chromebook
  • Arduino IDE
    • Upload Sketch for NyBoard
    • Upload Sketch for BiBoard
    • Calibrate the joints with Arduino IDE
    • Serial Monitor
    • C++ Curriculum: Learn Quadruped Robotics for Beginners
    • Install Arduino IDE on Chromebook
  • Free Curriculum
    • 📚Download
  • APIs
    • 🖇️Serial Protocol
      • Feedback servos
      • Nested task queue and signal generator
    • 🐍Python API
    • 🐛8266 MicroPython controller
      • Run MicroPython on ESP8266
      • Setup WebREPL
      • Using the ESP-NOW protocol
    • 🦎8266 Arduino C Controller
    • ©️C++ API
    • 🍓Raspberry Pi serial port as an interface
      • For BiBoard V1
    • 💻Set up Development Environment on Chromebook
    • 🤖ROS
  • Nyboard
    • Overview
    • NyBoard V1_0
    • NyBoard V1_1 & NyBoard V1_2
  • BIBOARD
    • BiBoard V0 Guide
    • BiBoard Extension Hat
    • Demo Applications
      • 1.GPIO port
      • 2.Serial port
      • 3.Analog-digital converter
      • 4.Digital-Analog Converter
      • 5.EEPROM (Electrically Erasable Programmable read only memory)
      • 6.Gyro IMU(MPU6050)
      • 7.Infrared remote control
      • 8.PWM(Pulse Width Modulation)
      • 9.Servo(under construction)
      • 10.Classic Bluetooth serial port SPP
      • 11.Bluetooth low energy (BLE) serial port pass-through
      • 12.File system SPIFFS
      • 13.Add hardware partition configuration option in Arduino IDE
      • 14.Play MP3
      • 15.The usage of Wi-Fi OTA(Over-The-Air)
    • BiBoard V1 Guide
  • Communication Modules
    • Introduction (For NyBoard)
    • USB Uploader (CH340C or CH343G)
    • Dual Mode Bluetooth
    • WiFi module ESP8266
      • ESP8266 + Python Scripts Implement wireless crowd control
  • Extensible Modules
    • Introduction
    • MU Camera
    • Ultrasonic Sensor
    • Light Sensor
    • Touch Sensor
    • Gesture Sensor
    • PIR Motion Sensor
    • IR Distance Sensor(Double Infrared Reflection Sensor)
    • Voice Command Module
    • Petoi AI Vision Module
    • Advanced development and application of AI vision modules
      • Model Training
      • Model quantification
      • Model deployment
      • Training on the COCO DIY dataset
    • Robot Arm
      • Upgrade your older Bittle/Bittle X for the robotics arm gripper
    • 🎮Joystick with Micro:Bit
  • Applications
    • Melody Creation
    • Skill Creation
    • OpenCat Imitation Tutorial
    • Programmable Puppet Character
    • Tutorial for simulating Bittle In Isaac Sim
  • History
    • Upload Sketch For NyBoard (software 1.0)
  • Technical Support
    • 💾Supporting Application and Software
    • 🔧Burn Bootloader for NyBoard
    • 🛠️Useful Tools
    • 🔋Battery
  • Useful Links 🕸
    • 🔭Home of Petoi Robots
    • 🛒Shop Coding Robots
    • 💿GitHub of OpenCat
    • 🎪PetoiCamp (Forum)
    • 📽️Petoi Robot Videos
    • 📬Users' repositories
Powered by GitBook
On this page
  • Installation
  • Fine-tuning

Was this helpful?

Export as PDF
  1. Desktop APP
  2. Joint Calibrator

Nybble

PreviousBiBoard PreparationNextBittle / Bittle X

Last updated 2 months ago

Was this helpful?

The joint calibration interface for Nybble in the Petoi Desktop App is as follows:

The servo slider is not available in the light yellow background area in the interface.

Installation

After entering the calibration state, , with all servos rotated to their zero angles, attach the head, tail, and legs prepared in the previous section to the body. They are generally perpendicular to their linked body frames. The calibration pose is shown below:

Install the servo-related components according to the picture above and try to ensure that they are perpendicular to each other (the upper leg is perpendicular to the torso, and the lower leg is perpendicular to the upper leg).

Fine-tuning

Use the included L-shaped tool as a reference during calibration. According to the index numbers of the joints shown at the top of the interface (when calibrating the servos, adjust the upper leg first, then adjust the lower leg). Drag the corresponding slider (below the index number), or click the blank part of the slider track to fine-tune the joint to right angles.

If the offset is more than +/-9 degrees, you need to remove the corresponding leg and reinstall it by rotating one tooth and then dragging the corresponding slider. For example, when it is adjusted to +9 and still not right, remove the corresponding leg and shift one tooth when attaching it. Then, you should get a smaller offset in the opposite direction.

Nybble's Calibration State